Powering Tomorrow With Ancient Plant Technology

Photosynthesis is how plants convert energy from the ball of fire in the sky into useful plant-growing energy. The USA’s Department of Energy is actually looking into how photosynthesis can be used to power our homes and even turn homes into miniature power stations using the power of nature.

According to Nocera, his new system can work at ambient temperatures and pressures, without corrosion in a simple glass of water, even polluted water. “If you need pure water for energy storage, they’ll drink it,” Nocera said. “Use puddle water instead.” In fact, Nocera has been running his prototype on untreated water from the Charles River in Boston. And it’s cheap, not $12,000 per kilowatt like commercial electrolyzers that do the same thing. “That’s not going to help the energy situation for the U.S. or poor people of the world.”

Using the electricity generated by a photovoltaic array five meters by six meters, Nocera claims he can split enough water in less than four hours “to store enough energy for the average American home” for a day, a little more than 30 kilowatt-hours. “We need to stop making big energy systems one a time to service lots of people. We need to do it the old American way of making one small one and then manufacturing that system to give it to the masses.”

Read more at Scientific American

Super Solar Storage to Revolutionize Sustainable Energy

Getting renewable energy is the easy part whereas storing it is the hard part. Battery technology has not kept pace with the green technology field. That is until a team at MIT figure out how to store sweet savoury solar energy efficiently.

Until now, solar power has been a daytime-only energy source, because storing extra solar energy for later use is prohibitively expensive and grossly inefficient. With today’s announcement, MIT researchers have hit upon a simple, inexpensive, highly efficient process for storing solar energy.

Requiring nothing but abundant, non-toxic natural materials, this discovery could unlock the most potent, carbon-free energy source of all: the sun. “This is the nirvana of what we’ve been talking about for years,” said MIT’s Daniel Nocera, the Henry Dreyfus Professor of Energy at MIT and senior author of a paper describing the work in the July 31 issue of Science. “Solar power has always been a limited, far-off solution. Now we can seriously think about solar power as unlimited and soon.”

Inspired by the photosynthesis performed by plants, Nocera and Matthew Kanan, a postdoctoral fellow in Nocera’s lab, have developed an unprecedented process that will allow the sun’s energy to be used to split water into hydrogen and oxygen gases. Later, the oxygen and hydrogen may be recombined inside a fuel cell, creating carbon-free electricity to power your house or your electric car, day or night.

Read more at MIT’s page on the project.

Thanks to Greg!

“Invisible” Wind Turbines

Good form of power- windResearchers at MIT have found a way to get wind turbines out of shallow water. Currently wind turbines in the ocean can only handle a depth of about 15 meters or less. Which means that people living on the shore have their view obstructed by them. This new wind turbine structure from MIT will allow turbines to be located far away from shore.

Paul D. Sclavounos, a professor of mechanical engineering and naval architecture, has spent decades designing and analyzing large floating structures for deep-sea oil and gas exploration. Observing the wind-farm controversies, he thought, “Wait a minute. Why can’t we simply take those windmills and put them on floaters and move them farther offshore, where there’s plenty of space and lots of wind?”

In 2004, he and his MIT colleagues teamed up with wind-turbine experts from the National Renewable Energy Laboratory (NREL) to integrate a wind turbine with a floater. Their design calls for a tension leg platform (TLP), a system in which long steel cables, or “tethers,” connect the corners of the platform to a concrete-block or other mooring system on the ocean floor. The platform and turbine are thus supported not by an expensive tower but by buoyancy. “And you don’t pay anything to be buoyant,” said Sclavounos.

According to their analyses, the floater-mounted turbines could work in water depths ranging from 30 to 200 meters. In the Northeast, for example, they could be 50 to 150 kilometers from shore. And the turbine atop each platform could be big–an economic advantage in the wind-farm business. The MIT-NREL design assumes a 5.0 megawatt (MW) experimental turbine now being developed by industry. (Onshore units are 1.5 MW, conventional offshore units, 3.6 MW.)

The tethers allow the floating platforms to move from side to side but not up and down–a remarkably stable arrangement. According to computer simulations, in hurricane conditions the floating platforms–each about 30 meters in diameter–would shift by one to two meters, and the bottom of the turbine blades would remain well above the peak of even the highest wave. The researchers are hoping to reduce the sideways motion still further by installing specially designed dampers similar to those used to steady the sway of skyscrapers during high winds and earthquakes.

MIT Goes Crazy for Green Energy

MIT researchers are looking into perhaps the most ambitious energy programs. Right now they would like you to use solar panels that are so green they use spinach. Why use an alternator in your car when light is more efficient?

Wired news has more information on MIT’s green electricity project.

“David Jhirad, a former deputy assistant secretary of energy and current VP for science and research at the World Resources Institute, said no other institution or government anywhere has taken on such an intensive, creative, broad-based, and wide-ranging energy research initiative.”

Scroll To Top