Solar Cell System Produces More Energy Than Light Absorbed

In something that sounds close to magic, some researchers the American National Renewable Energy Laboratory have found a way to get solar cells to produce more energy with over an 100% quantum efficiency. Basically more energy is created than light that hits the cell. This is done by exploiting quantum mechanics to produce more energy from solar cells.

The external quantum efficiency for photocurrent, usually expressed as a percentage, is the number of electrons flowing per second in the external circuit of a solar cell divided by the number of photons per second of a specific energy (or wavelength) that enter the solar cell. None of the solar cells to date exhibit external photocurrent quantum efficiencies above 100 percent at any wavelength in the solar spectrum.

Quantum dots, by confining charge carriers within their tiny volumes, can harvest excess energy that otherwise would be lost as heat – and therefore greatly increase the efficiency of converting photons into usable free energy.
The researchers achieved the 114 percent external quantum efficiency with a layered cell consisting of antireflection-coated glass with a thin layer of a transparent conductor, a nanostructured zinc oxide layer, a quantum dot layer of lead selenide treated with ethanedithol and hydrazine, and a thin layer of gold for the top electrode.

In a 2006 publication, NREL scientists Mark Hanna and Arthur J. Nozik showed that ideal MEG in solar cells based on quantum dots could increase the theoretical thermodynamic power conversion efficiency of solar cells by about 35 percent relative to today’s conventional solar cells. Furthermore, the fabrication of Quantum Dot Solar Cells is also amenable to inexpensive, high-throughput roll-to-roll manufacturing.

Read the rest at Physorg.

Scroll To Top